- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Myers, Andrew C. (1)
-
Sherk, Charles (1)
-
Suh, Gookwon Edward (1)
-
Zagieboylo, Drew (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Processors are typically designed in Register Transfer Level (RTL) languages, which give designers low-level control over circuit structure and timing. To achieve good performance, processors are pipelined, with multiple instructions executing concurrently in different parts of the circuit. Thus even though processors implement a fundamentally sequential specification (the instruction set architecture), the implementation is highly concurrent. The interactions of multiple instructions---potentially speculative---can cause incorrect behavior. We present PDL, a novel hardware description language targeted at the construction of pipelined processors. PDL provides one instruction at a time semantics: the first language to enforce that the generated pipelined circuit has the same behavior as a sequential specification. This enforcement facilitates design-space exploration. Adding or removing pipeline stages, moving operations across stages, or otherwise changing pipeline structure normally requires careful analysis of bypass paths and stall logic; with PDL, this analysis is handled by the PDL compiler. At the same time, PDL still offers designers fine-grained control over performance-critical microarchitectural choices such as timing of operations, data forwarding, and speculation. We demonstrate PDL's expressive power and ease of design exploration by implementing several RISC-V cores with differing microarchitectures. Our results show that PDL does not impose significant performance or area overhead compared to a standard HDL.more » « less
An official website of the United States government
